大发快三

关于举办大发快三“海内外优秀青年学者论坛”轻工科学与工程学院分论坛的通知

发布时间:2020-10-23设置

广大师生:

大发快三“海内外优秀青年学者论坛”旨在面向全球邀请青年才俊,围绕国际科学前沿、热点研究领域以及行业产业的技术问题等展开探讨和交流。籍此平台,启迪思维,开拓视野,促进学术交流与合作,本次论坛的具体安排如下:

一、论坛时间

202010289:30-11:30

二、地点

大发快三制浆造纸工程国家重点实验室重306会议室

三、论坛内容

1.9:30-10:10 报告人:符启良,

报告题目:木材纳米技术用于结构和功能材料;

2.10:10-10:50 报告人:陈朝吉,

报告题目:基于木材的功能材料设计;

3.10:50-11:30 报告人:钟如意,

报告题目:经修饰的Co3O4纳米片用于电催化生物质平台分子的转化;

欢迎广大师生参加!

  

  

轻工科学与工程学院

20201023

  

报告人简介1

符启良,20102013年分别获东北林业大学学士和硕士学位,2014-2018年在KTHLars Berglund教授课题组攻读博士学位,2018年毕业于瑞典皇家理工学院(KTH Royal Institute of Technology),并获博士学位。目前就职于新西兰皇家林业科学院(Scion, www.scionresearch.com),担任项目负责人(PI)。2019年获国际木材科学院(IAWS)颁发的博士论文奖,2020年获得新西兰木材和纤维产品技术创新奖 (Wood & Fibre Products & Technology Innovation Award NZ)。主持1项新西兰政府国际合作项目,参与欧盟和新西兰战略科学基金千万元级别项目各1项。研究成果发表在ACS Nano, ACS AM & I, JMCA, ChemSusChem Biomacromolecules等十余篇国际top期刊上,其中博士研究生阶段发表主题为“透明木材”的论文受到广泛关注,该论文为ESItop 1‰) 高被引论文,欧美多家媒体先后报道,并应邀作10余次学术报告。在新西兰工作期间,作为独立PI发表“透明木膜柔性电子器件”和“会发光的照明木材”在ACS Nano上,这些工作获新西兰、澳大利亚和欧美等学术媒体评述(如 C&EN, ACS Weekly PressPacNanoWerk等),以及多家公司(如Microsoft)咨询产品。

报告摘要

Wood nanotechnology is primarily associated with research on the extractions of wood and use of nanocellulose, hemicellulose or lignin for new materials. It also includes technologies applied to bulk wood materials. Recently, research in wood nanotechnology toward new material design concepts, e.g. structural and functional materials, has become a rapidly emerging field. Wood nanotechnology is applied to modify wood at nanoscale for engineering purposes. It allows to remove lignin and part of hemicellulose form a hierarchically structured wood resulting in a nanoporous scaffold mainly composed of cellulose nanofibrils. New material design with additional functionalities using these nanostructured wood templates is proposed.In this seminar, I will briefly introduce a short research background and motivations happening in my group. Then, I will present my research overview and selective achievements on the delignified wood in both structural and functional aspects. The future potentials of wood nanotechnology will be discussed. 

  

报告人简介2

陈朝吉,2015年博士毕业于华中科技大学,师从黄云辉教授、胡先罗教授;后于马里兰大学胡良兵教授课题组从事博士后研究工作至今。陈朝吉博士长期从事天然高分子基材料,特别是木材和纤维素材料的改性、结构设计及其在超轻结构材料、能源、环境等方面的研究工作,在天然高分子基材料储能、水处理、轻质高强结构材料开发、钠离子电池赝电容机制等方面取得若干研究进展。在国际著名学术期刊上发表SCI论文120余篇;其中发表第一作者(含共同第一作者)或通讯作者论文70余篇,包括Nature2篇)、Nature Reviews Materials1篇)、Nature Communications3篇)、Journal of the American Chemical Society1篇)、Advanced Materials8篇)、Joule1篇)、Chem1篇)、Matter3篇)、Energy & Environmental Science3篇)、Accounts of Chemical Research1篇)、Materials Today1篇)、ACS Nano6篇)、Advanced Energy Materials7篇)、Advanced Functional Materials8)Chemistry of Materials3)Nano Energy2篇)、Energy Storage Materials2篇)等。截止202010月,23篇论文入选ESI高被引论文(top 1%),9篇(曾)入选ESI热点论文(top 0.1%),论文总引用7900余次,H因子50google scholar)。此外,申请美国专利9项,中国专利1项。研究成果多次被NatureScience、麻省理工科技评论、BBCCNN美国之声、纽约时报、科学美国人、新华网、人民网等杂志及媒体进行亮点报道。与团队发明的超级木头(2018年发表于Nature)入选2018 R&D 100 AwardsR&D 100大奖一直被认为是全球最具声望的发明和创新奖项)。与团队发明的石墨-纤维素复合材料入选马里兰大学2018年度发明奖(为物质科学领域唯一入选)。关于赝电容型钠离子储存机制的研究工作入选“2015年中国百篇最具影响国际学术论文”及“2015年度华中科技大学十大科技进展”。

  

报告摘要

Woos is one of the most abundant biomaterials on Earth and has been ubiquitously used for thousands of years most commonly for construction, furniture and tools, and as a source of fuel. Optimized by evolution over 270 million years, trees feature a complex but highly efficient wood structure for water and nutrient transport and mechanical stability and durability. The unique material structure and pronounced anisotropy of wood endows it with an array of remarkable properties, yielding opportunities for the design of functional materials. By redesigning and reconstructing wood materials via structural engineering, chemical/thermal modification, or hybridization with other materials, it is possible to devise novel approaches to manipulating water, ions, photons, phonons, and mechanics, which can in turn enable a diverse range of emerging unconventional applications in high performance structural materials, energy storage and conversion, water treatment, thermal managements, light management, ionic nanofluidic, green electronics, biological materials, etc. In this talk I will discuss the structure, properties, engineering strategies, and functions of wood-based functional materials towards various sustainable applications.

  

报告人简介3

钟如意,分别于2009年和2012年在清华大学化学系获得学士和硕士学位,20171月于比利时荷语鲁汶大学生物科学与工程系获得博士学位。201711月至20206月在南方科技大学化学系和中国科学院大连化学物理研究所从事博士后研究。20207月至今,在南方科技大学化学系任研究助理教授。长期从事多相催化、生物质转化的研究,对催化剂表面物理化学性质的理解和调控具有丰富的经验和强烈的兴趣。在纳米Au催化加氢、表面模板剂去除、软模板法合成介孔氧化硅-碳纳米复合物、磺酸基官能团修饰、水热碳化、纳米片的修饰和复合等方面发表论著21篇,其中第一作者文章11篇,包括Applied Catalysis B Green Chem, ACS Catalysis等催化领域顶级刊物。

  

报告摘要:

Electrocatalytic conversion of biomass-based platform molecules (e.g. 5-hydroxymethylfurfural, HMF) is generally performed at low temperature (i.e., < 100 oC) and atmospheric pressure, which is more eco-friendly compared to the conventional thermochemical method. The oxidizing or reducing agents were in-situ generated during the electrochemical processes. Furthermore, the reactivity of the substrate molecules in the electrode reaction can be facilely regulated by the electrode potential and the reaction can be directly monitored by the current density. Take HMF electro-oxidation as an example, HMF can be upgraded into high-value chemicals like 2,5-furan dicarboxylic acid (FDCA) which is important in polymer industry. It is challenging to develop catalysts for selective electro-oxidation of HMF to FDCA with high catalytic activity and selectivity, but low energy-consumption and cost. Herein, ultra-thin two-dimensional (2D) Co3O4 nanosheets were investigated for HMF electro-oxidation. After solvothermal synthesis, Co3O4 nanosheets were modified by various means of treatments, and applied in the electrocatalytic oxygen evolution and HMF oxidation. The modifications include rapid heating (300 oC 5 min), amines like methylamine and ethylamine treatment, NaBH4 as well as NaBH4/methylamine treatment. The key role of low Co2+/Co3+ (part of which was induced by the oxygen vacancies to balance the charge) in the oxygen evolution and especially in the HMF electro-oxidation was manifested. The oxygen vacancies can induced by the polycrystalline strains through topotactic thermal transformation or reduction by amines and/or NaBH4. After modification, the selectivity of FDCA reached higher than 95 % and the Faradaic efficiency can be higher than 90 % in the potentiostatic HMF electrolysis. The best catalytic performance of oxygen evolution reaction and HMF electro-oxidation was obtained with Co3O4 nanosheets treated by NaBH4/methylamine, with the overpotential at a current density of 10 mA cm-2 as low as 310 and 279 mV, respectively.


返回原图
/